题目内容
【题目】在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是( )
A.y=﹣(x+1)2+2
B.y=﹣(x﹣1)2+4
C.y=﹣(x﹣1)2+2
D.y=﹣(x+1)2+4
【答案】B
【解析】解:由原抛物线解析式可变为:y=(x+1)2+2,
∴顶点坐标为(﹣1,2),与y轴交点的坐标为(0,3),
又由抛物线绕着它与y轴的交点旋转180°,
∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称,
∴新的抛物线的顶点坐标为(1,4),
∴新的抛物线解析式为:y=﹣(x﹣1)2+4.
故选B.
【考点精析】根据题目的已知条件,利用二次函数图象的平移的相关知识可以得到问题的答案,需要掌握平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减.
练习册系列答案
相关题目