题目内容
【题目】如图,点P是△ABC的外角∠EAB的平分线AF上的一点,PD垂直平分BC,PGAB,求证:BG=AG+AC.
【答案】证明见解析.
【解析】
作HP⊥CE,H为垂足,根据角平分线的性质得到PH=PG,推出Rt△APH≌Rt△APG,根据全等三角形的性质得到AH=AG,由PD垂直平分BC,得到PC=PB,证得Rt△PHC≌Rt△PGB,于是得到CH=BG,等量代换即可得到结论.
证明:作HP⊥CE,H为垂足,
∵点P是△ABC的外角∠EAB的平分线AF上的一点,PG⊥AB,
∴PH=PG,
在Rt△APH与Rt△APG中,
,
∴Rt△APH≌Rt△APG,
∴AH=AG,
∵PD垂直平分BC,
∴PC=PB,
在Rt△PHC与Rt△PGB中,
,
∴Rt△PHC≌Rt△PGB,
∴CH=BG,
∵CH=AC+AH=AC+AG,
∴BG=AG+AC.
练习册系列答案
相关题目
【题目】某厂一周计划每天生产200辆电动车,由于各种原因,实际每天的产量与计划相比有出入,下表是某周生产情况(超产为正,减产为负)
星期 | 一 | 二 | 三 | 四 | 五 |
增减 | +5 | -2 | -4 | +13 | -10 |
(1)产量最多一天是 辆,最少的一天是 辆.
(2)这一周一共生产了多少辆?
(3)该工厂按天计件计算工资,每生产一辆可得50元,若每超额一辆另奖15元,每少生产一辆另扣30元,那么该厂工人本周前三天的工资是多少元?