题目内容
【题目】如图,在数轴上,点A表示-5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动.设运动时间为t秒.
(1)当t为 秒时,P,Q两点相遇,求出相遇点所对应的数;
(2)当t为何值时,P,Q两点的距离为3个单位长度,并求出此时点P对应的数.
【答案】(1)5,对应数为0;(2)点P对应的数为-1或1.
【解析】
(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;
(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.
(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;
若P,Q两点相遇,则有
-5+t=10-2t,
解得:t=5,
-5+t=-5+5=0,
即相遇点所对应的数为0,
故答案为:5;相遇点所对应的数为0;
(2)若P、Q两点相遇前距离为3,则有
t+2t+3=10-(-5),
解得:t=4,
此时P点对应的数为:-5+t=-5+4=-1;
若P、Q两点相遇后距离为3,则有
t+2t-3=10-(-5),
解得:t=6,
此时P点对应的数为:-5+t=-5+6=1;
综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.
练习册系列答案
相关题目