题目内容
【题目】大润发超市在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.
(1)为了实现每天1600元的销售利润,超市应将这种商品的售价定为多少?
(2)设每件商品的售价为x元,超市所获利润为y元.
①求y与x之间的函数关系式;
②物价局规定该商品的售价不能超过40元/件,超市为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?
【答案】(1)售价应定为40元或60元(2)①y=-2x2+200x-3200 ②售价为40元/件时,此时利润最大,最大利润为1600元
【解析】(1)设商品的定价为x元,由题意,得
(x-20)[100-2(x-30)]=1600,
解得:x=40或x=60;
答:售价应定为40元或60元
(2)①y=(x-20)[100-2(x-30)](x≤40),
即y=-2x2+200x-3200
②∵a=-2<0,
∴当x==50时,y取最大值;
又x≤40,则在x=40时,y取最大值,即y最大值=1600,
答:售价为40元/件时,此时利润最大,最大利润为1600元
练习册系列答案
相关题目
【题目】父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格。
距离地面高度(千米) | 0 | 1 | 2 | 3 | 4 | 5 |
温度(℃) | 20 | 14 | 8 | 2 |
根据上表,父亲还给小明出了下面几个问题,你和小明一起回答。
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?
(3)你能猜出距离地面6千米的高空温度是多少吗?