题目内容
【题目】如图,在平面直角坐标系中,直线 与抛物线 交于A、B两点,点A在x轴上,点B的横坐标为﹣8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.
【答案】
(1)
解:对于 ,当y=0,x=2.当x=﹣8时,y=﹣ .
∴A点坐标为(2,0),B点坐标为 .
由抛物线 经过A、B两点,
得
解得 .
∴ .
(2)
解:①设直线 与y轴交于点M,
当x=0时,y= .∴OM= .
∵点A的坐标为(2,0),∴OA=2.∴AM= .
∵OM:OA:AM=3:4:5.
由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM∽△PED.
∴DE:PE:PD=3:4:5.
∵点P是直线AB上方的抛物线上一动点,
∵PD⊥x轴,
∴PD两点横坐标相同,
∴PD=yP﹣yD=﹣ ﹣ ﹣( x﹣ )
=﹣ x2﹣ x+4,
∴
= .
∴ .
∴x=﹣3时,l最大=15.
②当点G落在y轴上时,如图2,由△ACP≌△GOA得PC=AO=2,
即 ,解得 ,
所以 ,
如图3,过点P作PN⊥y轴于点N,过点P作PS⊥x轴于点S,
由△PNF≌△PSA,
PN=PS,可得P点横纵坐标相等,
故得当点F落在y轴上时,
x=﹣ ﹣ x+ ,解得x= ,
可得 , (舍去).
综上所述:满足题意的点P有三个,分别是
.
【解析】(1)利用待定系数法求出b,c即可;(2)①根据△AOM∽△PED,得出DE:PE:PD=3:4:5,再求出PD=yP﹣yD求出二函数最值即可;②当点G落在y轴上时,由△ACP≌△GOA得PC=AO=2,即 ,解得 ,所以得出P点坐标,当点F落在y轴上时,x= ,解得x= ,可得P点坐标.
【考点精析】根据题目的已知条件,利用二次函数的图象和二次函数的性质的相关知识可以得到问题的答案,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.