题目内容

精英家教网如图,在Rt△ABC中,∠ACB=90°,BC的垂直平分线交斜边AB于D,AB=12 cm,AC=6 cm,则图中等于60°的角共有(  )
A、2个B、3个C、4个D、5个
分析:根据已知条件易得∠B=30°,∠A=60°.再根据线段垂直平分线的性质求解.
解答:解:已知∠ACB=90°,AB=12cm,AC=6cm,
∵△ABC是直角三角形,AC=
1
2
AB,
∴∠B=30°,
∠A=90°-∠B=60°.
∵AC∥DE,
∴∠A=∠EDB=60°.
又∵DE垂直平分BC,故根据等腰三角形的性质可得∠CDE=∠EDB=60°.
CE=EB,AC∥DE?AD=DB,AB=12,故AD=DB=6,AC=6.
∴△ADC为等边三角形,
∴∠ADC=∠ACD=∠A=60°.
∴∠ADC,∠ACD,∠A,∠CDE,∠EDB都为60°.
故选D.
点评:本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)及等腰三角形的判定与性质;求得∠B=30°是正确解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网