题目内容

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是(  )

A. 4个 B. 3个 C. 2个 D. 1个

【答案】D

【解析】①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,

所以﹣=﹣1,可得b=2a,

当x=﹣3时,y<0,

即9a﹣3b+c<0,

9a﹣6a+c<0,

3a+c<0,

∵a<0,

∴4a+c<0,

所以①选项结论正确;

②∵抛物线的对称轴是直线x=﹣1,

∴y=a﹣b+c的值最大,

即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,

∴am2+bm<a﹣b,

m(am+b)+b<a,

所以此选项结论不正确;

③ax2+(b﹣1)x+c=0,

△=(b﹣1)2﹣4ac,

∵a<0,c>0,

∴ac<0,

∴﹣4ac>0,

∵(b﹣1)2≥0,

∴△>0,

∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;

④由图象得:当x>﹣1时,y随x的增大而减小,

∵当k为常数时,0≤k2≤k2+1,

∴当x=k2的值大于x=k2+1的函数值,

即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,

ak4+bk2>a(k2+1)2+b(k2+1),

所以此选项结论不正确;

所以正确结论的个数是1个,

故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网