题目内容
【题目】如图,△ABC中,AB=AC=4,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BAD=20°时,∠EDC= °;
(2)当DC等于多少时,△ABD≌△DCE?试说明理由;
(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.
【答案】(1)20;(2)证明见解析;(3)证明见解析.
【解析】
试题(1)利用三角形的外角的性质得出答案即可;
(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,进而求出△ABD≌△DCE;
(3)由等腰三角形的判定以及分类讨论得出即可.
试题解析:解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=60°﹣40°=20°,故答案为:20;
(2)当DC=2时,△ABD≌△DCE;理由:
∵∠ADE=40°,∠B=40°,又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠BAD=∠EDC.在△ABD和△DCE中,∵∠B=∠C,AB=DC,∠BAD=∠EDC,∴△ABD≌△DCE(ASA);
(3)当∠BAD=30°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=30°,∴∠DAE=70°,∴∠AED=180°﹣40°﹣70°=70°,∴DA=DE,这时△ADE为等腰三角形;
当∠BAD=60°时,∵∠B=∠C=40°,∴∠BAC=100°,∵∠ADE=40°,∠BAD=60°,∠DAE=40°,∴EA=ED,这时△ADE为等腰三角形.
练习册系列答案
相关题目