题目内容

(2013•广州)如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.
(1)求船P到海岸线MN的距离(精确到0.1海里);
(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.
分析:(1)过点P作PE⊥AB于点E,在Rt△APE中解出PE即可;
(2)在Rt△BPF中,求出BP,分别计算出两艘船需要的时间,即可作出判断.
解答:解:(1)过点P作PE⊥AB于点E,

由题意得,∠PAE=32°,AP=30海里,
在Rt△APE中,PE=APsin∠PAE=APsin32°≈15.9海里;

(2)在Rt△PBE中,PE=15.9海里,∠PBE=55°,
则BP=
PE
sin∠PBE
≈19.4,
A船需要的时间为:
30
20
=1.5小时,B船需要的时间为:
19.4
15
=1.3小时,
故B船先到达.
点评:本题考查了解直角三角形的应用,解答本题的关键是理解仰角的定义,能利用三角函数值计算有关线段,难度一般.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网