题目内容
如图,在平面直角坐标系中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴
与
轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)设点P为抛物线()上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的
正整数,请你直接写出点P的坐标;
(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求
出点N的坐标;若不存在,请你说明理由.
(1)根据已知条件可设抛物线的解析式为,
把点A(0,4)代入上式得:,
∴,
∴抛物线的对称轴是:.
(2)由已知,可求得P(6,4).
提示:由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,又知点P的坐标中,所以,MP>2,AP>2;因此以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6的一种情况,在Rt△AOM中,
,因为抛物线对称轴过点M,所以在抛物线
的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6;故以A、O、M、P为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立,
即P(6,4).
⑶法一:在直线AC的下方的抛物线上存在点N,使△NAC面积最大.
设N点的横坐标为,此时点N
(
,过点N作NG∥
轴交AC于G;由点A(0,4)和点C(5,0)可求出直线AC的解析式为:
;把
代入得:
,则G
,
此时:NG=-(
),
=.
∴
∴当时,△CAN面积的最大值为
,
由,得:
,∴N(
, -3).
法二:提示:过点N作轴的平行线交
轴于点E,作CF⊥EN于点F,则
解析
