题目内容
【题目】已知AB是⊙O的直径,弦CD与AB相交于点E,连接AD,BC,已知AE=AD,∠BAD=34°.
(1)如图①,连接CO,求∠ADC和∠OCD的大小;
(2)如图②,过点D作⊙O的切线与CB的延长线交于点F,连接BD,求∠BDF的大小.
【答案】(1)∠ADC=73°,∠OCD=39°;(2)34°
【解析】
(1)连接OD,根据等腰三角形的性质即可得到结论;
(2)连接OD,根据切线的性质得到∠ODF=90°,根据圆周角定理得到∠ADB=90°,根据等腰三角形的性质即可得到结论.
(1)连接OD.
∵AE=AD,∠BAD=34°,∴∠ADC=∠AED(180°﹣34°)=73°.
∵OA=OD=OC,∴∠ADO=∠A=34°,∴∠OCD=∠ODC=∠ADC﹣∠ADO=73°﹣34°=39°;
(2)连接OD.
∵DF是⊙O的切线,∴∠ODF=90°.
∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO=∠BDF.
∵OA=OD,∴∠A=∠ADO,∴∠BDF=∠BAD=34°.
练习册系列答案
相关题目