题目内容
【题目】如图,一次函数与反比例函数的图像交于A(1,12)和B(6,2)两点。点P是线段AB上一动点(不与点A和B重合),过P点分别作x、y轴的垂线PC、PD交反比例函数图像于点M、N,则四边形PMON面积的最大值是( )
A. B. C. 6 D. 12
【答案】A
【解析】解:设反比例函数解析式为y=,一次函数解析式为y=ax+b,将点A(1,12)代入y=中,得k=12,∴反比例函数解析式为y=,将点A(1,12)、B(6,2)代入y=ax+b中,得,解得,∴一次函数解析式为y=﹣2x+14.
设点P的坐标为(m,14﹣2m),则S四边形PMON=S矩形OCPD﹣S△OCM﹣S△ODN=S矩形OCPD﹣|k|=m(14﹣2m)﹣12=﹣2m2+14m﹣12=﹣2+,∴四边形PMON面积的最大值是.
故选A.
练习册系列答案
相关题目