题目内容
【题目】如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.
(1)求抛物线的解析式及顶点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;
(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.
【答案】(1)y=x2﹣2x﹣8,D(1,﹣9);(2)P( , );(3)点M的坐标为(﹣ , )或(4,﹣12)或(﹣5,﹣3).
【解析】试题分析:(1)将点A、点C的坐标代入抛物线的解析式可求得a、c的值,从而得到抛物线的解析式,最后利用配方法可求得点D的坐标;
(2)将y=0代入抛物线的解析式求得点B的坐标,然后由抛物线的对称轴方程可求得点E的坐标,由折叠的性质可求得∠BEP=45°,设直线EP的解析式为y=﹣x+b,将点E的坐标代入可求得b的值,从而可求得直线EP的解析式,最后将直线EP的解析式和抛物线的解析式联立组成方程组求解即可;
(3)先求得直线CD的解析式,然后再求得直线CB的解析式为y=k2x﹣8,从而可求得点F的坐标,设点M的坐标为(a,﹣a﹣8),然后分为MF=MB、FM=FB两种情况列方程求解即可.
试题解析:(1)将点A、点C的坐标代入抛物线的解析式得: ,解得:a=1,c=﹣8,∴抛物线的解析式为.∵y=(x﹣1)2﹣9,∴D(1,﹣9);
(2)将y=0代入抛物线的解析式得:x2﹣2x﹣8=0,解得x=4或x=﹣2,∴B(4,0),
∵y=(x﹣1)2﹣9,∴抛物线的对称轴为x=1,∴E(1,0),
∵将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,∴EP为∠BEF的角平分线,∴∠BEP=45°,
设直线EP的解析式为y=﹣x+b,将点E的坐标代入得:﹣1+b=0,解得b=1,
∴直线EP的解析式为y=﹣x+1.将y=﹣x+1代入抛物线的解析式得: ,解得:x=或x=,
点P在第四象限,∴x=,∴y=,∴P(, );
(3)设CD的解析式为y=kx﹣8,将点D的坐标代入得:k﹣8=﹣9,解得k=﹣1,
∴直线CD的解析式为y=﹣x﹣8,
设直线CB的解析式为y=k2x﹣8,将点B的坐标代入得:4k2﹣8=0,解得:k2=2,
∴直线BC的解析式为y=2x﹣8,
将x=1代入直线BC的解析式得:y=﹣6,∴F(1,﹣6),
设点M的坐标为(a,﹣a﹣8),
当MF=MB时,(a﹣4)2+(a+8)2=(a﹣1)2+(a+2)2,整理得:6a=﹣75,解得:a=﹣,∴点M的坐标为(﹣, );
当FM=FB时,(a﹣1)2+(a+2)2=(4﹣1)2+(﹣6﹣0)2,整理得:a2+a﹣20=0,解得:a=4或a=﹣5,
∴点M的坐标为(4,﹣12)或(﹣5,﹣3);
综上所述,点M的坐标为(﹣, )或(4,﹣12)或(﹣5,﹣3).
【题目】根据下表回答下列问题:
x | 16.0 | 16.1 | 16.2 | 16.3 | 16.4 | 16.5 | 16.6 | 16.7 | 16.8 |
x2 | 256.00 | 259.21 | 262.44 | 265.69 | 268.96 | 272.25 | 275.56 | 278.89 | 282.24 |
(1)265.69的平方根是 , ;
(2)表中与最接近的数是 .