题目内容
【题目】已知:如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:
(1)当t为何值时,四边形APFD是平行四边形?
(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形APFE∶S菱形ABCD=17∶40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.
【答案】(1) 当t=s时,四边形APFD是平行四边形.(2)y=-t2+t+48.(3) PE=(cm).
【解析】
试题(1))由四边形ABCD是菱形,OA=AC,OB=BD.在Rt△AOB中,运用勾股定理求出AB=10.再由△DFQ∽△DCO.得出.求出DF.由AP=DF.求出t.
(2)过点C作CG⊥AB于点G,由S菱形ABCD=ABCG=ACBD,求出CG.据S梯形APFD=(AP+DF)CG.S△EFD=EFQD.得出y与t之间的函数关系式;
(3)过点C作CG⊥AB于点G,由S菱形ABCD=ABCG,求出CG,由S四边形APFE:S菱形ABCD=17:40,求出t,再由△PBN∽△ABO,求得PN,BN,据线段关系求出EM,PM再由勾股定理求出PE.
试题解析:(1)∵四边形ABCD是菱形,
∴AB∥CD,AC⊥BD,OA=OC=AC=6, OB=OD=BD=8.
在Rt△AOB中,AB=10
∵EF⊥BD,
∴∠FQD=∠COD=90°.
又∵∠FDQ=∠CDO,
∴△DFQ∽△DCO.
∴.即
∴DF=
∵四边形APFD是平行四边形,
∴AP=DF.
即10-t=
解这个方程,得t=.
∴当t=s时,四边形APFD是平行四边形.
(2)如图,过点C作CG⊥AB于点G,
∵S菱形ABCD=ABCG=ACBD,
即10CG=×12×16,
∴CG=
∴S梯形APFD=(AP+DF)CG
=(10-t+)
=t+48.
∵△DFQ∽△DCO,
∴
即
∴QF=.
同理,EQ=
∴EF=QF+EQ=.
∴S△EFD=EFQD=××t=.
∴y=(t+48)-=-+t+48.
(3)如图,过点P作PM⊥EF于点M,PN⊥BD于点N,
若S四边形APFE:S菱形ABCD=17:40,
则-+t+48=×96,
即5t2-8t-48=0,
解这个方程,得t1=4,t2=-(舍去)
过点P作PM⊥EF于点M,PN⊥BD于点N,
当t=4时,
∵△PBN∽△ABO,
∴
即
∴PN=,BN=
∴EM=EQ-MQ=3-=
PM=BD-BN-DQ=16--4=
在Rt△PME中,
PE=cm.