ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÖ±Ïßl1£ºy=-x+2ÓëÖ±Ïßl2£ºy=2x+8ÏཻÓÚµãF£¬l1¡¢l2·Ö±ð½»xÖáÓÚµãE¡¢G£¬¾ØÐÎABCD¶¥µãC¡¢D·Ö±ðÔÚÖ±Ïßl1¡¢l2£¬¶¥µãA¡¢B¶¼ÔÚxÖáÉÏ£¬ÇÒµãBÓëµãGÖغϣ®£¨1£©ÇóµãFµÄ×ø±êºÍ¡ÏGEFµÄ¶ÈÊý£»
£¨2£©Çó¾ØÐÎABCDµÄ±ßDCÓëBCµÄ³¤£»
£¨3£©Èô¾ØÐÎABCD´ÓԵسö·¢£¬ÑØxÖáÕý·½ÏòÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈƽÒÆ£¬ÉèÒƶ¯Ê±¼äΪt£¨0¡Üt¡Ü6£©Ã룬¾ØÐÎABCDÓë¡÷GEFÖصþ²¿·ÖµÄÃæ»ýΪs£¬Çós¹ØÓÚtµÄº¯Êý¹Øϵʽ£¬²¢Ð´³öÏàÓ¦µÄtµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÓÉÓÚÖ±Ïßl1£ºy=-x+2ÓëÖ±Ïßl2£ºy=2x+8ÏཻÓÚµãF£¬Òò¶øÁªÁ¢Á½½âÎöʽ×é³É·½³Ì×éÇóµÃ½â¼´ÎªFµãµÄ×ø±ê£®¹ýFµã×÷Ö±ÏßFM´¹Ö±XÖá½»xÖáÓÚM£¬Í¨¹ý×ø±êÖµ¼äµÄ¹Øϵ֤µÃME=MF=4£¬´Ó¶øµÃµ½¡÷MEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏGEF=45¡ã£»
£¨2£©Ê×ÏÈÇóµÃB£¨»òG£©µãµÄ×ø±ê¡¢ÔÙÒÀ´ÎÇóµÃµãC¡¢D¡¢AµÄ×ø±ê£®²¢½ø¶øµÃµ½DCÓëBCµÄ³¤£»
£¨3£©Ê×ÏȽ«¶¯µãA¡¢BÓÃʱ¼ätÀ´±íʾ£®Ôپ͢ÙÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël2ÏཻÉè½»µãΪN£¬ADÓël1ÏཻÉè½»µãΪK£»¢ÚÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël1ÏཻÉè½»µãΪN£¬ADÓël1ÏཻÉè½»µãΪK£»¢ÛÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël1ÏཻÉè½»µãΪN£¬ADÓël1²»Ïཻ£®ÈýÖÖÇé¿öÌÖÂÛ½âµÃs¹ØÓÚtµÄº¯Êý¹Øϵʽ£®
£¨2£©Ê×ÏÈÇóµÃB£¨»òG£©µãµÄ×ø±ê¡¢ÔÙÒÀ´ÎÇóµÃµãC¡¢D¡¢AµÄ×ø±ê£®²¢½ø¶øµÃµ½DCÓëBCµÄ³¤£»
£¨3£©Ê×ÏȽ«¶¯µãA¡¢BÓÃʱ¼ätÀ´±íʾ£®Ôپ͢ÙÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël2ÏཻÉè½»µãΪN£¬ADÓël1ÏཻÉè½»µãΪK£»¢ÚÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël1ÏཻÉè½»µãΪN£¬ADÓël1ÏཻÉè½»µãΪK£»¢ÛÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël1ÏཻÉè½»µãΪN£¬ADÓël1²»Ïཻ£®ÈýÖÖÇé¿öÌÖÂÛ½âµÃs¹ØÓÚtµÄº¯Êý¹Øϵʽ£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâµÃ
£¬
½âµÃx=-2£¬y=4£¬
¡àFµã×ø±ê£º£¨-2£¬4£©£»
¹ýFµã×÷Ö±ÏßFM´¹Ö±XÖá½»xÖáÓÚM£¬ME=MF=4£¬¡÷MEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏGEF=45¡ã£»
£¨2£©¡ßµãGÊÇÖ±Ïßl2ÓëxÖáµÄ½»µã£¬
¡àµ±y=0ʱ£¬2x+8=0£¬½âµÃx=-4£¬
¡àGµãµÄ×ø±êΪ£¨-4£¬0£©£¬ÔòCµãµÄºá×ø±êΪ-4£¬
¡ßµãCÔÚÖ±Ïßl1ÉÏ£¬
¡àµãCµÄ×ø±êΪ£¨-4£¬6£©£¬
¡ßÓÉͼ¿ÉÖªµãDÓëµãCµÄ×Ý×ø±êÏàͬ£¬ÇÒµãDÔÚÖ±Ïßl2ÉÏ£¬
¡àµãDµÄ×ø±êΪ£¨-1£¬6£©£¬
¡ßÓÉͼ¿ÉÖªµãAÓëµãDµÄºá×ø±êÏàͬ£¬ÇÒµãAÔÚxÖáÉÏ£¬
¡àµãAµÄ×ø±êΪ£¨-1£¬0£©£¬
¡àDC=|-1-£¨-4£©|=3£¬BC=6£»
£¨3£©¡ßµãEÊÇl1ÓëxÖáµÄ½»µã£¬
¡àµãEµÄ×ø±êΪ£¨2£¬0£©£¬
S¡÷GFE=
GE•MF=
(2+4)¡Á4=12£¬
Èô¾ØÐÎABCD´ÓԵسö·¢£¬ÑØxÖáÕý·½ÏòÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈƽÒÆ£¬
µ±tÃëʱ£¬Òƶ¯µÄ¾àÀëÊÇ1¡Át=t£¬ÔòBµãµÄ×ø±êΪ£¨-4+t£¬0£©£¬AµãµÄ×ø±êΪ£¨-1+t£¬0£©£»
¢ÙÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël2ÏཻÉè½»µãΪN£¬ADÓël1ÏཻÉè½»µãΪK£¬ÄÇô-4¡Ü-4+t¡Ü-2£¬¼´0¡Üt¡Ü2ʱ£®
NµãµÄ×ø±êΪ£¨-4+t£¬2t£©£¬KµãµÄ×ø±êΪ£¨-1+t£¬3-t£©£¬
s=S¡÷GFE-S¡÷GNB-S¡÷AEK=12-
t•2t-
(3-t)•(3-t)=-
t2-3t+
£¬
¢ÚÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël1ÏཻÉè½»µãΪN£¬ADÓël1ÏཻÉè½»µãΪK£¬ÄÇô-2£¼-4+tÇÒ-1+t¡Ü3£¬¼´2£¼t£¼4ʱ£®
NµãµÄ×ø±êΪ£¨-4+t£¬6-t£©£¬KµãµÄ×ø±êΪ£¨-1+t£¬3-t£©£¬
s=SÌÝÐÎBNKA=
[(6-t)+(3-t)]•3=- 3t+
£¬
¢ÛÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël1ÏཻÉè½»µãΪN£¬ADÓël1²»Ïཻ£¬ÄÇô-4+t¡Ü3ÇÒ-1+t£¾3£¬¼´4¡Üt¡Ü6ʱ£®
NµãµÄ×ø±êΪ£¨-4+t£¬6-t£©£¬
s=S¡÷BNE=
[2-(-4+t)]•(6-t)=
t2-6t+18£¬
´ð£º£¨1£©Fµã×ø±ê£º£¨-2£¬4£©£¬¡ÏGEFµÄ¶ÈÊýÊÇ45¡ã£»
£¨2£©¾ØÐÎABCDµÄ±ßDCµÄ³¤Îª3£¬BCµÄ³¤Îª6£»
£¨3£©s¹ØÓÚtµÄº¯Êý¹Øϵʽ
£®
|
½âµÃx=-2£¬y=4£¬
¡àFµã×ø±ê£º£¨-2£¬4£©£»
¹ýFµã×÷Ö±ÏßFM´¹Ö±XÖá½»xÖáÓÚM£¬ME=MF=4£¬¡÷MEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏGEF=45¡ã£»
£¨2£©¡ßµãGÊÇÖ±Ïßl2ÓëxÖáµÄ½»µã£¬
¡àµ±y=0ʱ£¬2x+8=0£¬½âµÃx=-4£¬
¡àGµãµÄ×ø±êΪ£¨-4£¬0£©£¬ÔòCµãµÄºá×ø±êΪ-4£¬
¡ßµãCÔÚÖ±Ïßl1ÉÏ£¬
¡àµãCµÄ×ø±êΪ£¨-4£¬6£©£¬
¡ßÓÉͼ¿ÉÖªµãDÓëµãCµÄ×Ý×ø±êÏàͬ£¬ÇÒµãDÔÚÖ±Ïßl2ÉÏ£¬
¡àµãDµÄ×ø±êΪ£¨-1£¬6£©£¬
¡ßÓÉͼ¿ÉÖªµãAÓëµãDµÄºá×ø±êÏàͬ£¬ÇÒµãAÔÚxÖáÉÏ£¬
¡àµãAµÄ×ø±êΪ£¨-1£¬0£©£¬
¡àDC=|-1-£¨-4£©|=3£¬BC=6£»
£¨3£©¡ßµãEÊÇl1ÓëxÖáµÄ½»µã£¬
¡àµãEµÄ×ø±êΪ£¨2£¬0£©£¬
S¡÷GFE=
1 |
2 |
1 |
2 |
Èô¾ØÐÎABCD´ÓԵسö·¢£¬ÑØxÖáÕý·½ÏòÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈƽÒÆ£¬
µ±tÃëʱ£¬Òƶ¯µÄ¾àÀëÊÇ1¡Át=t£¬ÔòBµãµÄ×ø±êΪ£¨-4+t£¬0£©£¬AµãµÄ×ø±êΪ£¨-1+t£¬0£©£»
¢ÙÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël2ÏཻÉè½»µãΪN£¬ADÓël1ÏཻÉè½»µãΪK£¬ÄÇô-4¡Ü-4+t¡Ü-2£¬¼´0¡Üt¡Ü2ʱ£®
NµãµÄ×ø±êΪ£¨-4+t£¬2t£©£¬KµãµÄ×ø±êΪ£¨-1+t£¬3-t£©£¬
s=S¡÷GFE-S¡÷GNB-S¡÷AEK=12-
1 |
2 |
1 |
2 |
3 |
2 |
15 |
2 |
¢ÚÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël1ÏཻÉè½»µãΪN£¬ADÓël1ÏཻÉè½»µãΪK£¬ÄÇô-2£¼-4+tÇÒ-1+t¡Ü3£¬¼´2£¼t£¼4ʱ£®
NµãµÄ×ø±êΪ£¨-4+t£¬6-t£©£¬KµãµÄ×ø±êΪ£¨-1+t£¬3-t£©£¬
s=SÌÝÐÎBNKA=
1 |
2 |
27 |
2 |
¢ÛÔÚÔ˶¯µ½tÃ룬ÈôBC±ßÓël1ÏཻÉè½»µãΪN£¬ADÓël1²»Ïཻ£¬ÄÇô-4+t¡Ü3ÇÒ-1+t£¾3£¬¼´4¡Üt¡Ü6ʱ£®
NµãµÄ×ø±êΪ£¨-4+t£¬6-t£©£¬
s=S¡÷BNE=
1 |
2 |
1 |
2 |
´ð£º£¨1£©Fµã×ø±ê£º£¨-2£¬4£©£¬¡ÏGEFµÄ¶ÈÊýÊÇ45¡ã£»
£¨2£©¾ØÐÎABCDµÄ±ßDCµÄ³¤Îª3£¬BCµÄ³¤Îª6£»
£¨3£©s¹ØÓÚtµÄº¯Êý¹Øϵʽ
|
µãÆÀ£º±¾ÌâÊÇÒ»´Îº¯ÊýÓëÈý½ÇÐΡ¢¾ØÐΡ¢ÌÝÐÎÏà½áºÏµÄÎÊÌ⣬ÔÚͼÐÎÖÐÉø͸Ô˶¯µÄ¹ÛµãÊÇÖп¼Öо³£³öÏÖµÄÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿