题目内容
【题目】在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.
(1)求k的值;
(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.
①当b=﹣1时,直接写出区域W内的整点个数;
②若区域W内恰有4个整点,结合函数图象,求b的取值范围.
【答案】(1)4;(2) ①区域W内的整点有(1,0),(2,0),(3,0),有3个;②区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.
【解析】
(1)把A(4,1)代入中可得k的值;
(2)直线OA的解析式为:,可知直线l与OA平行,
①将b=-1时代入可得:直线解析式为,画图可得整点的个数;
②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.
(1)把A(4,1)代入y=得k=4×1=4;
(2)①当b=﹣1时,直线解析式为y=x﹣1,
解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),
而C(0,﹣1),
如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;
②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),
∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.
如图3,直线l在OA的上方时,
∵点(2,2)在函数y=(x>0)的图象G,
当直线l:y=+b过(1,2)时,b=,
当直线l:y=+b过(1,3)时,b=,
∴区域W内恰有4个整点,b的取值范围是<b≤.
综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.
【题目】在二次函数y=-x2+bx+c中,函数y与自变量x的部分对应值如下表:
x | …… | -2 | 0 | 3 | 4 | …… |
y | …… | -7 | m | n | -7 | …… |
则m、n的大小关系为( )
A. m>n B. m<n C. m=n D. 无法确定