题目内容

【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

从上表可知,有下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴是x=1;
③抛物线与x轴有两个交点,它们之间的距离是
④在对称轴左侧y随x增大而增大.
其中正确的说法是(
A.①②③
B.②③④
C.②③
D.①④

【答案】D
【解析】解:∵抛物线过点(﹣2,0)和(0,6),则 ,解得
∴抛物线的解析式为y=﹣x2+x+6,
∴抛物线与y轴的交点为(0,6),故①正确;
抛物线的对称是:直线x=﹣ = ,故②错误;
抛物线与x轴的两个交点为(﹣2,0),(3,0),它们之间的距离是5,故③错误;
抛物线开口向下,则在对称轴左侧,y随x的增大而增大,故④正确.
正确答案为①④.
故选:D.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网