题目内容
【题目】反比例函数y=(k≠0)与一次函数y=mx+b(m≠0)交于点A(1,2k﹣1).
(1)求反比例函数的解析式;
(2)若一次函数与x轴交于点B,且△AOB的面积为3,求一次函数的解析式.
【答案】(1)y=;(2)y=﹣或y=
【解析】
试题(1)把A(1,2k-1)代入y=即可求得结果;
(2)根据三角形的面积等于3,求得点B的坐标,代入一次函数y=mx+b即可得到结果.
试题解析:
(1)把A(1,2k﹣1)代入y=得,
2k﹣1=k,
∴k=1,
∴反比例函数的解析式为:y=;
(2)由(1)得k=1,
∴A(1,1),
设B(a,0),
∴S△AOB=|a|×1=3,
∴a=±6,
∴B(﹣6,0)或(6,0),
把A(1,1),B(﹣6,0)代入y=mx+b得:
,
∴ ,
∴一次函数的解析式为:y=x+,
把A(1,1),B(6,0)代入y=mx+b得:
,
∴,
∴一次函数的解析式为:y=﹣.
所以符合条件的一次函数解析式为:y=﹣或y=x+.
练习册系列答案
相关题目
【题目】在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:
根据所给信息,解答下列问题:
(1)在表中的频数分布表中,m= ,n= .
成绩 | 频数 | 频率 |
60≤x<70 | 60 | 0.30 |
70≤x<80 | m | 0.40 |
80≤x<90 | 40 | n |
90≤x≤100 | 20 | 0.10 |
(2)请补全图中的频数分布直方图.
(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?