题目内容
已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:
(1)求该二次函数的关系式;
(2)若A(-4,y1),B(
,y2)两点都在该函数的图象上,试比较y1与y2的大小;
(3)若A(m-1,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.
x | …. | -1 | 0 | 1 | 2 | 4 | … |
y | …. | 0 | -3 | -4 | 3 | 5 | …. |
(2)若A(-4,y1),B(
11 |
2 |
(3)若A(m-1,y1),B(m+1,y2)两点都在该函数的图象上,试比较y1与y2的大小.
(1)把(-1,0)、(0,-3)、(1,-4)代入函数解析式y=ax2+bx+c中,可得
,
解得
,
那么二次函数的解析式是y=x2-2x-3;
(2)把x=-4代入函数,可得y1=21,再把x=
代入函数,可得y2=
,
∴y1>y2;
(3)把x=m-1代入函数解析式可得y1=m2-4m,
再把x=m+1代入函数可得y2=m2-4,
y1-y2=-4m+4>0即m<1时,y1>y2;
当m>1时,y1<y2;
当m=1时,y1=y2.
|
解得
|
那么二次函数的解析式是y=x2-2x-3;
(2)把x=-4代入函数,可得y1=21,再把x=
11 |
2 |
65 |
4 |
∴y1>y2;
(3)把x=m-1代入函数解析式可得y1=m2-4m,
再把x=m+1代入函数可得y2=m2-4,
y1-y2=-4m+4>0即m<1时,y1>y2;
当m>1时,y1<y2;
当m=1时,y1=y2.
练习册系列答案
相关题目