题目内容
【题目】如图,Rt△ACB中,∠C=90°,AC=6,BC=8,半径为1的⊙O与AC,BC相切,当⊙O沿边CB平移至与AB相切时,则⊙O平移的距离为( )
A.3B.4C.5D.6
【答案】B
【解析】
设⊙O与AC相切于D,与BC相切于H,平移后的⊙O′与AB相切于F,与BC相切于E,连接OH,O′D,则点O在O′D上,连接O′F,EO′并延长交AB于G,根据正方形和矩形的性质得到OD=OH=O′E=O′F=CD=CH=1,OO′=HE,根据相似三角形的判定和性质定理即可得到结论.
解:∵Rt△ACB中,∠C=90°,AC=6,BC=8,
∴AB=10,
设⊙O与AC相切于D,与BC相切于H,平移后的⊙O′与AB相切于F,与BC相切于E,
连接OH,O′D,则点O在O′D上,连接O′F,EO′并延长交AB于G,
∴四边形CDOH是正方形,四边形OHEO′是矩形,
∴OD=OH=O′E=O′F=CD=CH=1,OO′=HE,
∴EG⊥BC,
∵∠C=90°,
∴EG∥AC,
∴∠FGE=∠A,
∵∠GFO′=∠C=90°,
∴∠O′FG∽∠BCA,
∴,
∴,
∴O′G=,
∴EG=,
∵GE∥AC,
∴△BGE∽△BAC,
∴,
∴,
∴BE=3,
∴OO′=HE=BC﹣CH﹣BE=8﹣1﹣3=4,
∴⊙O平移的距离为4,
故选:B.
练习册系列答案
相关题目