题目内容
【题目】已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.
(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;
(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.
①当点M与点C、D不重合时,连接CM,求∠CMD的度数;
②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.
【答案】(1)证明见解析;(2)①135°;②.
【解析】
试题分析:(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.
(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.
②利用①的结论可知,点M在以AC为直径的⊙O上,运动路径是弧CD,利用弧长公式即可解决问题.
试题解析:(1)如图1中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵△CEF是由△CAD旋转逆时针α得到,α=90°,∴CB与CE重合,∴∠CBE=∠A=45°,∴∠ABF=∠ABC+∠CBF=90°,∵BG=AD=BF,∴∠BGF=∠BFG=45°,∴∠A=∠BGF=45°,∴GF∥AC.
(2)①如图2中,∵CA=CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.
②如图3中,O是AC中点,连接OD、CM.
∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==,∴当α从90°变化到180°时,点M运动的路径长为.
【题目】某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:
甲 | 乙 | 丙 | 丁 | |
(环) | 8.4 | 8.6 | 8.6 | 7.6 |
S2 | 0.74 | 0.56 | 0.94 | 1.92 |
如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是( )
A.甲 B.乙 C.丙 D.丁