题目内容
【题目】在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,当AB、CD满足什么条件时,四边形EGFH是菱形?请证明你的结论.(提示:过点B作BM∥AD交EG的延长线于点M,证明EG//AB且EG=AB)
【答案】见解析
【解析】试题分析:本题可根据菱形的定义来求解.E、G分别是AD,BD的中点,那么EG就是三角形ADB的中位线,同理,HF是三角形ABC的中位线,因此EG、HF同时平行且相等于AB,因此EG∥HF,EG=HF.因此四边形EHFG是平行四边形,E、H是AD,AC的中点,那么EH=CD,要想证明EHFG是菱形,那么就需证明EG=EH,那么就需要AB、CD满足AB=CD的条件.
试题解析:当AB=CD时,四边形EGFH为菱形.
证明:过点B作BM∥AD交EG的延长线于点M,则∠DEG=∠GMB.∵G为BD的中点,∴DG=GB.
又∵∠DGE=∠BGM,∴△DGE≌△BGM,∴EG=GM,ED=BM.
∵E为AD的中点,∴AE=ED,∴BM∥AE,
∴四边形AEMB为平行四边形,
∴EM∥AB,
∴EG∥AB,EG=AB.
同理FH∥CD,GF∥CD,GF=CD,
∴四边形EGFH为平行四边形.
∵AB=CD,∴GF=HF,
∴平行四边形EGHF是菱形.
练习册系列答案
相关题目