题目内容
【题目】如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线DE交AC于D,若CD=10cm,则AD=____________ cm
【答案】20
【解析】
根据题意得出∠ABC=60°,再根据线段的垂直平分线的性质得到DA=DB,得出∠ABD=∠A=30°,从而求出∠DBC=30°,根据直角三角形中,30°所对的直角边是斜边的一半求出BD的长即可得出答案.
解:在△ABC中,∠C=90°,∠A=30°,
∴∠ABC=60°
∵DE是边AB的垂直平分线,
∴DA=DB,
∴∠ABD=∠A=30°,
∴∠DBC=∠ABC -∠ABD =30°
在RtCBD中,CD=10cm,
∴DB=2CD=20cm,
∴DA=20cm
故答案为:20.
练习册系列答案
相关题目