题目内容

【题目】定义:若一个三角形中,其中有一个内角是另外一个内角的一半,则这样的三角形叫做半角三角形”. 例如:等腰直角三角形就是半角三角形”.在钝角三角形中,,过点的直线边于点.点在直线上,且

1)若,点延长线上.

,点恰好为中点时,依据题意补全图1.请写出图中的一个半角三角形_______;

如图2,若,图中是否存在半角三角形除外),若存在,请写出图中的半角三角形,并证明;若不存在,请说明理由;

2)如图3,若,保持的度数与(1)中②的结论相同,请直接写出 满足的数量关系:______

【答案】1)① 如图,见解析;△或△或△或△; ②存在,“半角三角形”为△;证明见解析;2

【解析】

1)①根据题干描述作出图形即可,利用等腰三角形的性质,根据“一个内角是另外一个内角的一半”的三角形符合题意,可得出结果.②延长,使得,连接,构造全等三角形△≌△.再利用全等三角形的性质以及相关角度的转化,可求得,从而可得出结果.

2)由(1)中②可知,,延长到点,使得,连接BF,构造全等三角形△≌△,进而可得出.因为,所以以为圆心,长为半径作圆与直线一定有两个交点,当第一种情况成立时,必定存在一个与它互补的,所以可得出另外一种情况.

1)① 如图,

图中的一个 “半角三角形”:△或△或△或△;
存在,“半角三角形”为△.

延长,使得,连接

.

.

中,

≌△.

.

.

∴∠BAE=2BEA,

∴△ 为“半角三角形”.

2.

解:延长到点,使得,连接BF,

∴△≌△.

过点分别作于点

于点,

可得.

.

②因为,所以以为圆心,长为半径作圆与直线一定有两个交点,当第一种情况成立时,必定存在一个与它互补的

可知:.

综上所述,这三个角之间的关系有两种,

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网