题目内容
【题目】如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.
(1)证明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的长.
【答案】
(1)证明:∵四边形ABCD是正方形,
∴AD=AB,
∵∠1=∠2,∠3=∠4,
∴△ABE≌△DAF.
(2)解:∵四边形ABCD是正方形,∠AGB=30°,
∴AD∥BC,
∴∠1=∠AGB=30°,
∵∠1+∠4=∠DAB=90°,
∵∠3=∠4,
∴∠1+∠3=90°,
∴∠AFD=180°﹣(∠1+∠3)=90°,
∴DF⊥AG,
∴DF= AD=1,
∴AF= ,
∵△ABE≌△DAF,
∴AE=DF=1,
∴EF= ﹣1.
故所求EF的长为 ﹣1
【解析】(1)根据已知及正方形的性质,利用ASA即可判定△ABE≌△DAF;(2)根据正方形的性质及直角三角形的性质可得到DF的长,根据勾股定理可求得AF的长,从而就不难求得EF的长.
【考点精析】利用正方形的性质对题目进行判断即可得到答案,需要熟知正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
练习册系列答案
相关题目