题目内容

【题目】将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=度.

【答案】70°
【解析】解:如图所示:

∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,

∴∠4=180°﹣60°﹣32°=88°,

∴∠5+∠6=180°﹣88°=92°,

∴∠5=180°﹣∠2﹣108° ①,

∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,

∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,

即∠1+∠2=70°.

所以答案是:70°.


【考点精析】解答此题的关键在于理解多边形内角与外角的相关知识,掌握多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网