题目内容
【题目】平面直角坐标系中,点A坐标为(a,0),点B坐标为(b,2),点C坐标为(c,m),其中a、b、c满足方程组.
(1)若a=2,则三角形AOB的面积为 ;
(2)若点B到y轴的距离是点C到y轴距离的2倍,求a的值;
(3)连接AB、AC、BC,若三角形ABC的面积小于等于9,求m的取值范围.
【答案】(1)2;(2)a=11或a=;(3)﹣且m≠﹣.
【解析】
(1)求出A点坐标,可求出答案;
(2)由题意得出b=a+3,c=a-4,则B(a+3,2),C(a-4,m),则|a+3|=2|a-4|,解方程即可得出答案;
(3)过点C作y轴的平行线l,延长BA交l于M,过点B作x轴的平行线交直线l于点D,直线l交x轴于点E,由面积法得M(a﹣4,﹣),根据S△BCM-S△ACM≤9,可得出关于a的不等式组,则可得出答案.
(1)∵点A坐标为(a,0),点B坐标为(b,2),a=2,
∴A(2,0),
∴三角形AOB的面积为×2×2=2;
故答案为:2;
(2)∵a、b、c满足方程组.
∴b=a+3,c=a﹣4,
∴B(a+3,2),C(a﹣4,m),
∵点B到y轴的距离是点C到y轴距离的2倍,
∴|a+3|=2|a﹣4|,
∴a=11或a=;
(2)过点C作y轴的平行线l,延长BA交l于M,过点B作x轴的平行线交直线l于点D,直线l交x轴于点E,
设EM=n,则BD=7,DE=2,AE=4,
∵S△BDM=S△AEM+S梯形BDEA,
∴×7×(2+n)=×4×n+ ×2×(4+7),
解得:n=,
∴M(a﹣4,﹣),
∵S△ABC≤9,
∴S△BCM﹣S△ACM≤9,
∴|,|≤6,
∴,
∵m≠﹣,
∴且m≠﹣.
练习册系列答案
相关题目