题目内容
【题目】已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD.
(1)如图1,当点P在线段OC上时,求证:OP=CD;
(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;
(3)如图2,抛物线y=﹣x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形?若存在,请求出t的值;若不存在,请说明理由.
【答案】(1)见解析;(2) 综上,t1=2,t2=,t3=;(3)见解析.
【解析】
(1)证,可以证明它们所在的三角形全等,即证明:;已知的条件有:,,只需再找出一组对应角相等即可,通过图示可以发现、是同角的余角,这两个角相等,那么证明三角形全等的全部条件都已得出,则结论可证;
(2)点在轴上运动,那么就需分三种情况讨论:
①点在轴负半轴上;可以延续(1)的解题思路,先证明、全等,那么得到的条件是,然后用表示、的长,再根据给出的相似三角形得到的比例线段,列等式求出此时的值,要注意的正负值的判断;
②点在线段上时;由于、都小于等于正方形的边长(即、),所以只有时,给出的两个三角形才有可能相似(此时是全等),可据此求出的值;
③点在点的右侧时;方法同①;
(3)这道题要分两种情况讨论:
①线段为平行四边形的对角线,那么点、关于的中点对称即两点的纵坐标互为相反数,而,即、的横坐标相同,那么先用表示出点的坐标,代入抛物线的解析式中,即可确定的值;
②线段为平行四边形的边;先用表示出的长,把点向左或向右平移长个单位就能表达出点的坐标,代入抛物线解析式后即可得到的值.
(1)证明:∵OD⊥AH,
∴∠OAP=∠DOC=90°﹣∠AOD;
正方形OABC中,OA=OC=4,∠AOP=∠OCD=90°,即:
∵,
∴△AOP≌△OCD
∴OP=CD.
(2)解:①点P在x轴负半轴上时,P(t,0),且t<0,如图①;
∵在Rt△AOP中,OH⊥AP,
∴∠POH=∠PAO=90°﹣∠APO;
又∵∠POH=∠COD,
∴∠COD=∠PAO;
在△AOP与△OCD中,
∵,
∴△AOP≌△OCD;
∴OP=CD=﹣t,则:BD=BC+CD=4﹣t;
若△AOP与以A、B、D为顶点的三角形相似,则有:
,得:,
解得:或(正值舍去);
②当点P在线段OC上时,P(t,0),0<t≤4,如图②;
因为OP<OA、BD<AB、OA=AB,
若△AOP与以A、B、D为顶点的三角形相似,那么有:,所以OP=BD,即:
t=4﹣t,t=2;
③当点P在点C右侧时,P(t,0),t>4,如图③;
同①可求得;
综上,t1=2,,.
(3)解:假设存在符合条件的点Q,分两种情况讨论:
①PC为平行四边形的对角线,则QP∥CD,且QP=CD;
若P(t,0)、D(4,t),则Q(t,﹣t),代入抛物线中,得:
,即:t2﹣10t﹣24=0,
解得:t1=﹣2,t2=12;
②PC为平行四边形的边,则DQ∥PC,且QD=PC;
若P(t,0)、D(4,t),则 PC=QD=|t﹣4|,Q(t,t)或(8﹣t,t);
Q(t,t)时,,即:t2+2t﹣24=0,
解得 t1=4(舍)、t2=﹣6;
Q(8﹣t,t)时,,即:t2﹣6t+8=0,
解得 t1=4(舍)、t2=2.
综上可知,t1=2,t2=12,t3=﹣6,t4=﹣2.
∴存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形.