题目内容

【题目】已知二次函数 的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D.
(1)求以A,B,C,D为顶点的四边形的面积;
(2)在抛物线上是否存在点P,使得△ABP的面积是△ABC的面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由。

【答案】
(1)解:令y=0, x26x+5=0 ,
∴ x1=1,x2=5,
∴A(1,0),B(5,0),
令x=0,
∴y=5,
∴C(0,5)
∵ y=x26x+5=(x3)24 ,
∴D(3,-4)
∴S四边形ACBD=S△ABD+S△ABC=+=18 .
(2)解:∵ S△ABP=2S△ABC,且两个三角形底边相同,
∴ |yP|=2|yC|=10 ,
又∵ ymin=4 ,
∴ yP=10 ,
∴ P1(3+,10),P2(3-,10).
【解析】(1)根据题意令y=0得出A(1,0),B(5,0),令x=0得C(0,5),将抛物线解析式化成顶点式得 D(3,-4),从而求出
∴S四边形ACBD=S△ABD+S△ABC=+=18 .

(2)根据 S△ABP=2S△ABC,且底边相同,得出|yP|=2|yC|=10 ,再由已知条件得yP=10 , 从而得P点坐标为 P1(3+,10),P2(3-,10).

【考点精析】认真审题,首先需要了解抛物线与坐标轴的交点(一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.),还要掌握三角形的面积(三角形的面积=1/2×底×高)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网