题目内容
如图,在?ABCD中,AE平分∠BAD,BF平分∠ABC,AD=3,AB=4,则EF=______.
∵AE平分∠BAD,BF平分∠ABC,
∴∠CBF=∠ABF,∠BAE=∠DAE,
又∵ABCD是平行四边形,AB∥CD,AD∥CB,
∴∠CBF=∠CFB,∠DAE=∠DEA,
∴CB=CF,DA=DE,
故可得EF=CF+DE-CD=AD+AD-AB=2.
故答案为:2.
∴∠CBF=∠ABF,∠BAE=∠DAE,
又∵ABCD是平行四边形,AB∥CD,AD∥CB,
∴∠CBF=∠CFB,∠DAE=∠DEA,
∴CB=CF,DA=DE,
故可得EF=CF+DE-CD=AD+AD-AB=2.
故答案为:2.
练习册系列答案
相关题目