题目内容
如图,分别延长?ABCD的边BA、DC到点E、H,使得AE=AB,CH=CD,连接EH,分别交AD、BC于点F、G.
求证:△AEF≌△CHG.
求证:△AEF≌△CHG.
证明:在?ABCD中,AB∥CD,AB=CD,
∴∠E=∠H,∠EAF=∠D,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,
∴∠EAF=∠HCG,
∵AE=AB,CH=CD,
∴AE=CH,
在△AEF与△CHG中,
∴△AEF≌△CHG(ASA).
∴∠E=∠H,∠EAF=∠D,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,
∴∠EAF=∠HCG,
∵AE=AB,CH=CD,
∴AE=CH,
在△AEF与△CHG中,
|
∴△AEF≌△CHG(ASA).
练习册系列答案
相关题目