题目内容
【题目】(1)如图(1),已知:在等腰直角三角形中,,直线经过点,直线,直线,垂足分别为点、.则、和之间的数量关系是: .
(2)如图(2),将(1)中的条件改为:在等腰三角形中,、、三点都在直线上,且,其中为任意锐角或钝角.请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),、是直线上的两动点(、、三点互不重合),点为平分线上的一点,且和均为等边三角形,连接、,若,求证:.
【答案】(1)DE=BD+CE;(2)成立;(3)理由见解析.
【解析】
(1)根据同角的余角相等得出∠CAE=∠ABD,进而利用AAS得出△ABD≌△CAE,即可得出DE=BD+CE;
(2)根据∠BDA=∠AEC=∠BAC=α,得出∠CAE=∠ABD.在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;
(3)连接BC.由(2)的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则有∠DBF=∠FAE,利用“SAS”可证明△DBF≌△EAF,即可得出结论.
(1)DE=BD+CE.理由如下:
如图1.
∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°.
又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD.
在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE.
∵DE=AD+AE,∴DE=CE+BD;
(2)成立.理由如下:
如图2.
∵∠BDA=∠AEC=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD.
在△ADB和△CEA中,∵,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;
(3)DF=EF.理由如下:
连接BC.
∵△ABF和△ACF均为等边三角形,∴BF=BA=AF=AC,∠ABF=∠CAF=60°.
由(2)知,△ADB≌△CAE,BD=EA,∠DBA=∠CAE.
∵∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE.
在△DBF和△EAF中,∵,∴△DBF≌△EAF(SAS),∴DF=EF.
【题目】为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:
A 型 | B 型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 240 | 200 |
经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
(1)求 a,b 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.