题目内容
如图,在△ABC中,∠A,∠B,∠C所对的边分别用a,b,c表示,∠A=2∠B,且∠A=60°,求证:a2=b(b+c).


证明:∵∠A=60°,∠A=2∠B,
∴∠B=30°,
∴∠C=90°,
∴b=
c,
∴a=
=
=
c,
∴a2=
c2.
∵b(b+c)=
c(
c+c)=
c2,
∴a2=b(b+c).
∴∠B=30°,
∴∠C=90°,
∴b=
1 |
2 |
∴a=
c2-b2 |
c2-
|
| ||
2 |
∴a2=
3 |
4 |
∵b(b+c)=
1 |
2 |
1 |
2 |
3 |
4 |
∴a2=b(b+c).

练习册系列答案
相关题目