题目内容
【题目】如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.
(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是 的中点,⊙O的半径为1,求图中阴影部分的面积.
【答案】
(1)解:CD与圆O相切.理由如下:
∵AC为∠DAB的平分线,
∴∠DAC=∠BAC,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OCA,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
则CD与圆O相切
(2)解:连接EB,交OC于F,
∵E为 的中点,
∴ ,
∴AE=EC,
∴∠EAC=∠ECA,
又∵∠EAC=∠OAC,
∴∠ECA=∠OAC,
∴CE∥OA,
又∵OC∥AD,
∴四边形AOCE是平行四边形,
∴CE=OA,AE=OC,
又∵OA=OC=1,
∴四边形AOCE是菱形,
∵AB为直径,得到∠AEB=90°,
∴EB∥CD,
∵CD与⊙O相切,C为切点,
∴OC⊥CD,
∴OC∥AD,
∵点O为AB的中点,
∴OF为△ABE的中位线,
∴OF= AE=
,即CF=DE=
,
在Rt△OBF中,根据勾股定理得:EF=FB=DC= ,
则S阴影=S△DEC= ×
×
=
.
【解析】(1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD垂直于CD,得到OC垂直于CD,即可得证;(2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下
时刻 | 9:00 | 9:45 | 12:00 |
碑上的数 | 是一个两位数,数字之和是9 | 十位与个位数字与9:00时所看到的正好相反 | 比9:00时看到的两位数中间多了个0 |
9:00时看到的两位数是( )
A. 54 B. 45 C. 36 D. 27