题目内容
17、已知二次函数y=-x2+4x.
(1)用配方法或公式法把该函数化为y=a(x+m)2+k(其中a、m、k都是常数且a≠0)的形式,并指出函数图象的开口方向,对称轴和顶点坐标;
(2)当x满足什么条件时,函数值随着自变量的增大而减小?
(1)用配方法或公式法把该函数化为y=a(x+m)2+k(其中a、m、k都是常数且a≠0)的形式,并指出函数图象的开口方向,对称轴和顶点坐标;
(2)当x满足什么条件时,函数值随着自变量的增大而减小?
分析:(1)根据配方法的解题步骤,将一般式转化为顶点式,再根据顶点式确定对称轴及顶点坐标;
(2)根据二次函数图象性质,由对称轴及开口方向确定自变量x的取值范围.
(2)根据二次函数图象性质,由对称轴及开口方向确定自变量x的取值范围.
解答:解:(1)y=-(x2-4x),
=-(x2-4x+4)+4,
=-(x-2)2+4,
对称轴为直线x=2,顶点坐标为(2,4);
(2)∵y=-(x-2)2+4,a<0,对称轴为直线x=2,
∴当x>2时,函数值y随着自变量x的增大而减小.
=-(x2-4x+4)+4,
=-(x-2)2+4,
对称轴为直线x=2,顶点坐标为(2,4);
(2)∵y=-(x-2)2+4,a<0,对称轴为直线x=2,
∴当x>2时,函数值y随着自变量x的增大而减小.
点评:本题考查了用配方法将抛物线一般式转化为顶点式的方法,顶点式与对称轴、顶点坐标的关系以及二次函数的增减性.
练习册系列答案
相关题目
已知二次函数y=-x2+bx+c的图象过点A(1,2),B(3,2),C(0,-1),D(2,3).点P(x1,y1),Q(x2,y2)也在该函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是( )
| A、y1≥y2 | B、y1>y2 | C、y1<y2 | D、y1≤y2 |