题目内容
【题目】如图,正方形ABCD中,点E是AD边的中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BE:BC=:2;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是
A.1B.2C.3D.4
【答案】D
【解析】
首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证 △ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD:求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确;
因为点E是AD边的中点,求出AB= 2AE,BE= AE
即可求得BE:BC=:2,故②正确;
根据 AD ∥BC,求出S△BDE=S△CDE,推出 S△BDE﹣S△DEH=S△CDE﹣S△DEH,
即;S△BHE=S△CHD,故③正确;
由∠AHD=∠CHD,得到邻补角和对顶角相等得到∠AHB=∠EHD,故④正确
∵四边形ABCD是正方形,E是AD边上的中点,
∴AE=DE,AB=CD,∠BAD=∠CDA=90°,
在△BAE和△CDE中
∵
∴△BAE≌△CDE(SAS),
∴∠ABE=∠DCE,
∵四边形ABCD是正方形,
∴AD=DC,∠ADB=∠CDB=45°,
∵在△ADH和△CDH中,
∴△ADH≌△CDH(SAS),
∴∠HAD=∠HCD,
∵∠ABE=∠DCE
∴∠ABE=∠HAD,
∵∠BAD=∠BAH+∠DAH=90°,
∴∠ABE+∠BAH=90°,
∴∠AGB=180°-90°=90°,
∴AG⊥BE,故①正确;
∵点E是AD边的中点,
∴AB= 2AE,
∴BE= AE
∴BE:BC=:2,故②正确;
∵AD∥BC,∴S△BDE=S△CDE,
∴S△BDE﹣S△DEH=S△CDE﹣S△DEH,
即;S△BHE=S△CHD,故③正确;
∵△ADH≌△CDH,
∴∠AHD=∠CHD,
∴∠AHB=∠CHB,
∵∠BHC=∠DHE,
∴∠AHB=∠EHD,故④正确;
故选:D.
【题目】某商场用5500元购进甲、乙两种矿泉水共180箱,矿泉水的成本价与销售价如下表所示:
类别 | 成本价(元箱) | 销售价(元箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)购进甲、乙两种矿泉水各多少箱?
(2)该商场售完这180箱矿泉水,可获利多少元?