题目内容
【题目】如图,在△ABC中,AB=5,BC=6,BC边上的中线AD=4.求AC的长.
【答案】解:如图所示, ∵AD是BC边上的中线
∴BD=DC= BC= =3.
∵AD2+BD2=42+32=25,
∴AB2=52=25,
∴AD2+BD2=AB2 ,
∴∠ADB=90°.
∵∠ADB+∠ADC=180°,
∴∠ADC=90°.
在Rt△ADC中,根据勾股定理,
AC2=AD2+CD2=42+32=25,
∴AC=5
【解析】先根据AD是BC边上的中线得出BD的长,根据勾股定理的逆定理判断出△ABD是直角三角形,在Rt△ADC中,根据勾股定理即可得出结论.
【考点精析】关于本题考查的勾股定理的概念,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能得出正确答案.
练习册系列答案
相关题目