题目内容

【题目】已知经过原点的抛物线 轴的另一个交点为 ,现将抛物线向右平移 个单位长度,所得抛物线与 轴交于 ,与原抛物线交于点 ,设 的面积为 ,则用 表示 =

【答案】
【解析】令-2x2+4x=0,得x1=0,x2=2
∴点A的坐标为(2,0),
如图1,当0<m<2时,作PH⊥x轴于H,

设P(xP , yP),
∵A(2,0),C(m,0)
∴AC=2-m,
∴CH=
∴xP=OH=m+
把xP= 代入y=-2x2+4x,
得yP=- m2+2
∵CD=OA=2
∴S= CDHP= ×2×(- m2+2)=- m2+2
如图2,当m>2时,作PH⊥x轴于H,

设P(xP , yP
∵A(2,0),C(m,0)
∴AC=m-2,
∴AH=
∴xP=OH=2+ =
把xP= 代入y=-2x2+4x,得
yP=- m2+2
∵CD=OA=2
∴S= CDHP= m2-2.
综上可得:s=
【考点精析】本题主要考查了抛物线与坐标轴的交点的相关知识点,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网