题目内容
【题目】如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是( )
A. 8 B. 9 C. 10 D. 11
【答案】C
【解析】
作DM⊥AC于M,DN⊥AB于N.首先证明BD:DC=2:3,设△ABC的面积为S.则S△ADC=S,S△BEC=S,构建方程即可解决问题;
解:作DM⊥AC于M,DN⊥AB于N.
∵AD平分∠BAC,DM⊥AC于M,DN⊥AB于N,
∴DM=DN,
∴S△ABD:S△ADC=BD:DC=ABDN:ACDM=AB:AC=2:3,
设△ABC的面积为S.则S△ADC=S,S△BEC=S,
∵△OAE的面积比△BOD的面积大1,
∴△ADC的面积比△BEC的面积大1,
∴S-S=1,
∴S=10,
故选:C.
练习册系列答案
相关题目
【题目】某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其它四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:
类别 | 频数(人数) | 频率 |
文学 | m | 0.42 |
艺术 | 22 | 0.11 |
科普 | 66 | n |
其他 | 28 | |
合计 | 1 |
(1)表中m= , n=;
(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最少?
(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?