题目内容
【题目】如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).
(1)求抛物线的函数表达式;
(2)当0<x<3时,求线段CD的最大值;
(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;
(4)过点B,C,P的外接圆恰好经过点A时,x的值为 .(直接写出答案)
【答案】(1)y=﹣x2+2x+3;(2)当x=时,CD最大=;(3)x=±或x=±2;(4)1.
【解析】分析:(1)用待定系数法求出抛物线解析式即可;(2)先确定出直线AB解析式,进而得出点D,C的坐标,即可得出CD的函数关系式,即可得出结论;(3)先确定出CD=|-x2+3x|,DP=|-x+3|,再分两种情况解绝对值方程即可;
(4)利用四个点在同一个圆上,得出过点B,C,P的外接圆的圆心既是线段AB的垂直平分线上,也在线段PC的垂直平分线上,建立方程即可.
本题解析:
(1)∵抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),∴﹣9+3b+c=0,c=3,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;
(2)∵A(3,0),B(0,3),∴直线AB解析式为y=﹣x+3,
∵P(x,0).∴D(x,﹣x+3),C(x,﹣x2+2x+3),
∵0<x<3,∴CD=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x=﹣(x﹣)2+,当x=时,CD最大=;
(3)由(2)知,CD=|﹣x2+3x|,DP=|﹣x+3|
①当S△PDB=2S△CDB时,∴PD=2CD,即:2|﹣x2+3x|=|﹣x+3|,∴x=±或x=3(舍),
②当2S△PDB=S△CDB时,∴2PD=CD,即:|﹣x2+3x|=2|﹣x+3|,∴x=±2或x=3(舍),
即:综上所述,x=±或x=±2;
(4)直线AB解析式为y=﹣x+3,∴线段AB的垂直平分线l的解析式为y=x,
∵过点B,C,P的外接圆恰好经过点A,
∴过点B,C,P的外接圆的圆心既是线段AB的垂直平分线上,也在线段PC的垂直平分线上,
∴,∴x=±,故答案为: