题目内容

【题目】【问题提出】
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 , 可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 , 则△ABC≌△DEF.

【答案】
(1)HL
(2)

证明:如图②,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,

∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,

∴180°﹣∠ABC=180°﹣∠DEF,

即∠CBG=∠FEH,

在△CBG和△FEH中,

∴△CBG≌△FEH(AAS),

∴CG=FH,

在Rt△ACG和Rt△DFH中,

∴Rt△ACG≌Rt△DFH(HL),

∴∠A=∠D,

在△ABC和△DEF中,

∴△ABC≌△DEF(AAS);


(3)

解:如图③中,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,

△DEF和△ABC不全等;


(4)∠B≥∠A
【解析】(1.)解:如图①,
∵∠B=∠E=90°,
∴在Rt△ABC和Rt△DEF中,

∴Rt△ABC≌Rt△DEF(HL),
故答案为:HL;
(4.)解:由图③可知,∠A=∠CDA=∠B+∠BCD,
∴∠A>∠B,
∴当∠B≥∠A时,△ABC就唯一确定了,
则△ABC≌△DEF.
故答案为:∠B≥∠A.
(1)直接利用HL定理得出Rt△ABC≌Rt△DEF;(2)首先得出△CBG≌△FEH(AAS),则CG=FH,进而得出Rt△ACG≌Rt△DFH,再求出△ABC≌△DEF;(3)利用已知图形再做一个钝角三角形即可得出答案;(4)利用(3)中方法可得出当∠B≥∠A时,则△ABC≌△DEF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网