题目内容

【题目】如图,在RtABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB是⊙O的切线.

(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.

(3)(3分)在(2)的条件下,设⊙O的半径为3,求AB的长.

【答案】(1)证明见解析;(2);(3)

【解析】试题分析:(1)过OOF⊥ABF,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得,设BO="y" BF=z,列二元一次方程组即可解决问题.

试题解析:(1)证明:作OF⊥ABF

∵AO∠BAC的角平分线,∠ACB=90

∴OC=OF

∴AB⊙O的切线

2)连接CE

∵AO∠BAC的角平分线,

∴∠CAE=∠CAD

∵∠ACE所对的弧与∠CDE所对的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,设AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易证Rt△B0F∽Rt△BAC

BO=y BF=z

4z=93y4y=123z

解得z=y=

∴AB=4=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网