题目内容
【题目】如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.
(1)证明:∠CAE=∠CBF;
(2)证明:AE=BF.
【答案】
(1)证明:在等腰△ABC中,
∵CH是底边上的高线,
∴∠ACH=∠BCH,
在△ACP和△BCP中, ,
∴△ACP≌△BCP(SAS),
∴∠CAE=∠CBF(全等三角形对应角相等)
(2)在△AEC和△BFC中 ,
∴△AEC≌△BFC(ASA),
∴AE=BF(全等三角形对应边相等).
【解析】(1)根据等腰三角形三线合一的性质可得CH平分∠ACB,再证明△ACE和△BCF全等,然后根据全等三角形对应角相等可得结论;(2)证明△AEC≌△BFC,根据全等三角形对应边相等即可证明.
【考点精析】本题主要考查了等腰三角形的性质的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角)才能正确解答此题.
练习册系列答案
相关题目