题目内容
【题目】阅读材料:
小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2 =(1+)2.善于思考的小明进行了以下探索:
设a+b=(m+n)2(其中a,b,m,n均为正整数),则有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分形如a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a,b,m,n均为正整数时,若a+b=(m+n)2,用含m,n的式子分别表示a,b,得a=__________,b=__________;
(2)利用所探索的结论,找一组正整数a,b,m,n填空:________+________=(________+________)2;
(3)若a+4=(m+n)2,且a,m,n均为正整数,求a的值.
【答案】(1)m2+3n2,2mn;(2) 4,2,1,1(答案不唯一);(3) 13
【解析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;
(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;
(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.
解:(1)∵a+b=,
∴a+b=m2+3n2+2mn,
∴a=m2+3n2,b=2mn.
故答案为:m2+3n2,2mn.
(2)设m=1,n=1,
∴a=m2+3n2=4,b=2mn=2.
故答案为4、2、1、1.
(3)由题意,得:
a=m2+3n2,b=2mn
∵4=2mn,且m、n为正整数,
∴m=2,n=1或者m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=13.
“点睛”本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.
【题目】某政府部门进行公务员招聘考试,其中三人中录取一人,他们的成绩如下:
人 | 测试成绩 | ||
题目 | 甲 | 乙 | 丙 |
文化课知识 | 74 | 87 | 69 |
面试 | 58 | 74 | 70 |
平时表现 | 87 | 43 | 65 |
(1)按照平均成绩甲、乙、丙谁应被录取?
(2)若按照文化课知识、面试、平时表现的成绩已4:3:1的比例录取,甲、乙、丙谁应被录取?