题目内容
【题目】如图,抛物线y=﹣x2+(m+2)x+ 与x轴交于A(﹣2﹣n,0),B(4+n,0)两点(A在B的左侧),与y轴交于点C,顶点为D.
(1)求此抛物线的解析式;
(2)以点B为直角顶点作直角三角形BCE,斜边CE与抛物线交于点P,且CP=EP,求点P的坐标;
(3)将△BOC绕着它的顶点B顺时针在第一象限内旋转,旋转的角度为α,旋转后的图形为△BO′C′.当旋转后的△BO′C′有一边与BD重合时,求△BO′C′不在BD上的顶点的坐标.
【答案】
(1)解:由题意﹣2﹣n+4+n=m+2,
解得m=0,
∴y=﹣x2+2x+3
(2)解:如图1中,设P(m,﹣m2+2m+3).易知A(﹣1,0),B(3,0),C(0,3).
∵PC=PE,∠CBE=90°,
∴PB=PC=PE,
∴m2+(﹣m2+2m+3﹣3)2=(m﹣3)2+(﹣m2+2m+3)2,
整理得:m2﹣m﹣3=0,
∴m= ,
∴P( ,
)或P(
,
)
(3)解:如图2中,当BC′与BP重合时,过点O′作O′D⊥OB于D.
因为∠PBC+∠CBO′=∠CBO′+∠ABO′=45°,
所以∠ABO′=∠PBC.
则△DBO′∽△CBP,
所以 =
,
所以 =
,
所以BD=3O′D.
设O′D=x,则BD=3x,根据勾股定理,得x2+(3x)2=32,
解得x= ,
所以BD= ,
所以点O′的坐标为(3﹣ ,
).
如图3中,当BO′与BP重合时,过点B作x轴的垂线BE,过点C′作C′E⊥BE于E,
因为∠PBE+∠EBC′=∠PBE+∠CBP=45°,
所以∠EBC′=∠PBC.
所以△EBC′∽△CBP,
所以 =
,
所以 =
,
所以BE=3C′E.
设C′E为y,则BE=3y,根据勾股定理,
得y2+(3y)2=(3 )2,
解得y= ,
所以BE= ,
所以C′的坐标为(3+ ,
)
【解析】(1)利用根与系数的关系或根据抛物线的对称轴x=-=
(x1+x2),其中是x1、x2是抛物线与x轴两交点的横坐标,列出方程求出m即可解决问题。
(2)先根据函数解析式求出A,B,C三点坐标,设P(m,-m2+2m+3).再证明PC=PB,利用两点间距离公式,列出方程即可解决问题。
(3)应分两种情况考虑:当BC′与BP重合,此时O′为所求点.过点O′作O′D⊥OB于D,根据点B、C的坐标证得∠CBO=∠C′BO′=45°,这两个等角同时减去∠CBO′后可得到∠PBC=∠O′BD,即可证得△PBC∽△O′BD,根据PC、BC的比例关系,可求得O′D、BD的比例关系,进而可由勾股定理和O′B(即OB)的长求出O′D、BD的长,即可得到点O′的坐标;
当BO′与BP重合时,C′为所求的点.可过B作直线BE⊥x轴,过C′作C′E⊥BE于E,按照1)的思路,可证△EBC′∽△CBP,同样能得到C′E、BE的比例关系,进而由勾股定理出这两条线段的长,即可得到点C′的坐标。
【考点精析】掌握根与系数的关系和勾股定理的概念是解答本题的根本,需要知道一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.
根据以上信息回答下列问题:
(1)本次共随机抽取了 名学生进行调查,听写正确的汉字个数x在 范围的人数最多;
(2)补全频数分布直方图;
(3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;
听写正确的汉字个数x | 组中值 |
1≤x<11 | 6 |
11≤x<21 | 16 |
21≤x<31 | 26 |
31≤x<41 | 36 |
(4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.