题目内容

已知:,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧。

1.(1)如图,当∠APB=45°时,求ABPD的长;

2.(2)当∠APB变化,且其它条件不变时,求PD 的最大值,及相应∠APB  的大小。

 

 

1.(1)①如图11,作AEPB于点E

             ∵ △APE中,∠APE=45°,

             ∴

                

             ∵

             ∴

             在Rt△ABE中,∠AEB=90°,

.…………1分

           ②解法一:如图12,因为四边形ABCD为正方形,可将

PAD绕点A顺时针旋转90°得到△

可得△≌△,

       ∴ =90°,=45°,=90°.

                    ∴ .分

                    ∴ .…………2分

              解法二:如图13,过点PAB的平行线,与DA的延长线交于F,设DA的  延长线交PBG

                     在Rt△AEG中,可得

                      在Rt△PFG中,可得

                     在Rt△PDF中,可得

                                           

2.(2)如图14所示,将△PAD绕点A顺时针旋转90°得到△ PD 的最大值即为的最大值.

∵ △中,

P、D两点落在直线AB的两侧,

∴ 当三点共线时,取得最大值(见图15).

        此时,即的最大值为6. …………4分

        此时∠APB=180°-=135°. …………5分

 

 

 

 

 

 

 

 

 

 

解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网