题目内容
【题目】如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,AB∶BD=.
(1)求tan∠DAC的值.
(2)若BD=4,求S△ABC.
【答案】(1);(2).
【解析】
(1)过D点作DE⊥AB于点E,根据相似三角形的判定易证△BDE∽△BAC,可得,再根据角平分线的性质可得DE=CD,利用等量代换即可得到tan∠DAC的值;
(2)先利用特殊角的三角形函数得到∠CAD=30°,进而得到∠B=30°,根据直角三角形中30°角所对直角边为斜边的一半得到DE的长,进而得到CD与AC的长,再利用三角形的面积公式求解即可.
解:(1)如图,过D点作DE⊥AB于点E,
在△BDE与△BAC中,
∠BED=∠C=90°,∠B=∠B,
∴△BDE∽△BAC,
∴,
∵AD是∠BAC的平分线,
∴DE=CD,
∴,
∴tan∠DAC;
(2)∵tan∠DAC,
∴∠DAC=30°,
∴∠BAC=2∠DAC=60°,
∴∠B=90°﹣∠BAC=30°,
∴DE=BD=2,
∴CD=DE=2,
∴BC=BD+CD=6,
∵,
∴,
∴S△ABC=.
【题目】某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
17 | 18 | 16 | 13 | 24 | 15 | 28 | 26 | 18 | 19 |
22 | 17 | 16 | 19 | 32 | 30 | 16 | 14 | 15 | 26 |
15 | 32 | 23 | 17 | 15 | 15 | 28 | 28 | 16 | 19 |
对这30个数据按组距3进行分组,并整理、描述和分析如下.
频数分布表
组别 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
销售额 | |||||||
频数 | 7 | 9 | 3 | 2 | 2 |
数据分析表
平均数 | 众数 | 中位数 |
20.3 | 18 |
请根据以上信息解答下列问题:
(1)填空:a= ,b= ,c= ;
(2)若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;
(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.