题目内容

【题目】当图形具有邻边相等的特征时,我们可以把图形的一部分绕着公共端点旋转,这样将分散的条件集中起来,从而达到解决问题的目的

如图1,等腰直角三角形内有一点连接为探究三条线段间的数量关系,我们可以将绕点逆时针旋转得到连接___ _____ 三角形,三条线段的数量关系是_

如图2,等边三角形内一点P,连接请借助第一问的方法探究三条线段间的数量关系.

如图3 ,在四边形中,在四边形内部,且请直接写出的长.

【答案】1,直角,;(2,证明详见解析;(3

【解析】

1)根据旋转的性质易得是直角三角形,再根据勾股定理即可求解.

2)将绕点顺时针旋转连接可得为等边三角形,,再根据利用勾股定理即可求解.

3)将绕点顺时针旋转连接,根据,得到,再根据,得到,在中可求得,再根据,可得,从而证明即可求解.

绕点逆时针旋转得到

,∠=

∵BP⊥

是直角三角形.

如图,将绕点顺时针旋转连接

为等边三角形,

.将绕点顺时针旋转连接

中可求得

可证

练习册系列答案
相关题目

【题目】2016湖北省黄冈市)如图,已知点A1a)是反比例函数的图象上一点,直线与反比例函数的图象在第四象限的交点为点B

1)求直线AB的解析式;

2)动点Px0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.

【答案】1y=x4;(2P40).

【解析】试题分析:(1)先把A1a)代入反比例函数解析式求出a得到A点坐标,再解方程组,得B点坐标,然后利用待定系数法求AB的解析式;

2)直线ABx轴于点Q,如图,利用x轴上点的坐标特征得到Q点坐标,则PA﹣PB≤AB(当PAB共线时取等号),于是可判断当P点运动到Q点时,线段PA与线段PB之差达到最大,从而得到P点坐标.

试题解析:(1)把A1a)代入a=﹣3,则A1﹣3),解方程组: ,得: ,则B3﹣1),设直线AB的解析式为y=kx+b,把A1﹣3),B3﹣1)代入得: ,解得: ,所以直线AB的解析式为y=x﹣4

2)直线ABx轴于点Q,如图,当y=0时,x﹣4=0,解得x=4,则Q40),因为PA﹣PB≤AB(当PAB共线时取等号),所以当P点运动到Q点时,线段PA与线段PB之差达到最大,此时P点坐标为(40).

考点:反比例函数与一次函数的交点问题.

型】解答
束】
22

【题目】成都三圣乡花卉基地出售两种盆栽花卉:太阳花6/盆,绣球花10/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.

(1)若小张家花台绿化需用60盆两种盆栽花卉,小张爸爸给他460元钱去购买,问两种花卉各买了多少盆?

(2)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;

(3)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网