题目内容
【题目】把若干个正奇数1,3,5,7,…,2015,按一定规律(如图方式)排列成一个表.
(1)在这个表中,共有多少个数?2011在第几行第几列?(如57在第4行第5列);
(2)如图,用一十字框在表中任意框住5个数,设中间的数为a,用代数式表示十字框中的五个数之和;
(3)十字框中的五个数的和能等于6075吗?若能,请写出这五个数;若不能,说明理由.
【答案】(1)共有1008个数,2011在第126行第6列;(2)5a;(3)十字框中的五个数的和不能等于6075,见解析
【解析】
(1)设共有n个数,利用奇数的表示方法得到2n﹣1=2015,解得n=1008,即在这个表中,共有1008个数;先判断2011是第1006个数,加上1006=125×8+6,所以得到2011在第126行第6列;
(2)设中间的数为a,则利用左右两数相差2,上下两数相差16可表示出这5个数分别为a﹣16,a﹣2,a,a+2,a+16,然后计算它们的和;
(3)由(2)的结论得到5a=6075,解得a=1215,接着判断1215在第76行第8列,由于每行有8个数,所以它的右边没有数,所以不成立.
(1)设共有n个数,
根据题意得2n﹣1=2015,解得n=1008,
即在这个表中,共有1008个数;
因为2x﹣1=2011,解得x=1006,即2011是第1006个数,
而1006=125×8+6,
所以2011在第126行第6列;
(2)设中间的数为a,则这5个数分别为a﹣16,a﹣2,a,a+2,a+16,
所以a﹣16+a﹣2+a+a+2+a+16=5a;
(3)根据题意得5a=6075,解得a=1215,
因为2n﹣1=1215,解得n=608,
而608=76×8,即1215在第76行第8列,它的右边没有数,所以不成立,
所以十字框中的五个数的和不能等于6075.
【题目】三位老师周末到某家电专卖店购买冰箱和空调,正值该专卖店举行“迎新春、大优惠”活动,具体优惠情况如下表:
购物总金额(原价) | 折扣率 |
不超过3000元的部分 | 九折 |
超过3000元但不超过5000元的部分 | 八折 |
超过5000元的部分 | 七折 |
(1)李老师所购物品的原价是6000元,李老师实际付 元
(2)已知张老师购买了两件物品(一个冰箱和一个空调)共付费4060元.请问这两件物品的原价总共是多少元?
(3)碰巧同一天赵老师也在同一家专卖店购买了同样的两件物品.但赵老师上午去购买的冰箱,下 午去购买的空调,如此一来赵老师两次付款总额比张老师多花费了140元.已知此冰箱的原价比空调的原价要贵,求这两件物品的原价分别为多少元?