题目内容
【题目】平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).
发现:如图2,当点P恰好落在BC边上时,求a的值即阴影部分的面积;
拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
探究:当半圆K与矩形ABCD的边相切时,直接写出sinα的值.
【答案】发现:α=30°,S阴影=+;
拓展: BN=,0<x≤2﹣1;
探究: sinα的值为:或或.
【解析】
试题分析:首先设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,则可求得∠RKQ的度数,于是求得答案;
拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN,即可求得BN,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF,则可求出x的取值范围;
探究:半圆K与矩形ABCD的边相切,分三种情况:①半圆K与BC相切于点T,②当半圆K与AD相切于T,③当半圆K与CD切线时,点Q与点D重合,且为切点;分别求解即可求得答案.
解:发现:如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,
过点R作RE⊥KQ于点E,在Rt△OPH中,PH=AB=1,OP=2,
∴∠POH=30°,
∴α=60°﹣30°=30°,
∵AD∥BC,
∴∠RPO=∠POH=30°,
∴∠RKQ=2×30°=60°,
∴S扇形KRQ==,
在Rt△RKE中,RE=RKsin60°=,
∴S△PRK=RE=,
∴S阴影=+;
拓展:如图5,
∵∠OAN=∠MBN=90°,∠ANO=∠BNM,
∴△AON∽△BMN,
∴,即,
∴BN=,
如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,
∴x的取值范围是0<x≤2﹣1;
探究:半圆K与矩形ABCD的边相切,分三种情况;
①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,
则∠KSO=∠KTB=90°,
作KG⊥OO′于G,在Rt△OSK中,
OS==2,
在Rt△OSO′中,SO′=OStan60°=2,KO′=2﹣,
在Rt△KGO′中,∠O′=30°,
∴KG=KO′=﹣,
∴在Rt△OGK中,sinα===,
②当半圆K与AD相切于T,如图6,同理可得sinα====;
③当半圆K与CD切线时,点Q与点D重合,且为切点,
∴α=60°,
∴sinα=sin60°=;
综上所述sinα的值为:或或.